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1 Network Information Theory

In this lecture, we will be discussing multiuser/network information theory. There
is a recent book on it by Abbas El Gamal and Young-Han Kim.

1.1 Shannon capacity region of a multiuser DMC

In the multiple access channel model, there are multiple transmitters and a single
receiver. For example, we could think of a cell tower receiving multiple signals. The
channel is modeled as in the DMC case and also as in the power constrained Gaussian
channel model. We will study the Shannon capacity region in Shannon’s block coding
formulation. Good news: This is known, unlike many problems in network information
theory.

Consider the 2 transmitter case:

• X1 is the input alphabet of transmitter 1.

• X2 is the input alphabet of transmitter 2.

• Y is the output alphabet.

• The channel model in a simple use is (p(y | x1, x2) ≥ 0,
∑

y p(y | x1, x2) = 1 ∀x1, x2).

• The encoding map of transmitters 1 and 2 are

e(1)n : [M (1)
n ] 7→ X n1 , e(2)n : [M (2)

n ] 7→ X n2 ,

and the decoding map is

dn : Yn 7→ [M (1)
n ]× [M (2)

n ].

Like a Pavlovian dog, let’s turn the Shannon crank.
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Definition 1.1. If there exists ((e
(1)
n , e

(2)
n , dn), n ≥ 1) such that

lim inf
n

1

n
logM (1)

n ≥ R1,

lim inf
n

1

n
logM (2)

n ≥ R2,

P(dn(e(1)n (W1,n), e(2)n (W2,n)) 6= (W1,n,W2,n)→ 0,

where Wi,n ∼ Unif[M
(i)
n ], and W1,nqW2,n, we say that the rate pair (R1, R2) is achievable.

Theorem 1.1. The closure1 of the set of achievable rate pairs is the closed convex hull of
the union of all the sets of rate pairs of the type

Rp(x1)p(x2) = {(R1, R2) :R1 < I(X1;Y | X2),

R2 < I(X2;Y | X1),

R1 +R2 < I(X1, X2;Y )}

for some p(x1)p(x2), where p(y | x1, x2) is given by the channel.

In general, each of these regions looks like a polyhedron.

Remark 1.1. A more elegant way to write this region is as

{(R1, R2) :R1 < I(X1;Y | X2, Q),

R2 < I(X2;Y | X1, Q),

R1 +R2 < I(X1, X2;Y | Q)},

where the joint distribution is

p(q)p(x1 | q)p(x2 | q)p(y | x1, x2),

and Q ∈ Q, a finite set of size ≤ 4.

Proof. Achievability is via a random coding argument. Given p(x1)p(x2) and (R1, R2)inRp(x1)p(x2)
and clock length n, transmitter 1 constructs the random codebook

X1,1(1) · · · X1,n(1)
...

...
X1,1(m1) · · · X1,n(m1)

...
...

X1,1(d2n(R1−δ)e) · · · X1,n(d2n(R1−δ)e)

 ,

1We take the closure because this is an engineering class, where we don’t want to bother with the
boundary.
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and transmitter 2 constructs the random codebook

X2,1(1) · · · X2,n(1)
...

...
X2,1(m1) · · · X2,n(m1)

...
...

X2,1(d2n(R2−δ)e) · · · X2,n(d2n(R2−δ)e)

 .

Let W1,n = Unif([M
(1)
n ]) and W2,n = Unif([M

(2)
n ]), where M

(1)
n = 2nR1 and M

(2)
n = 2nR2 .

Then decode via

dn(Y n) =


(m1,m2) if there is a unique (m1,m2) such that

((X1)
n
1 (m1), (X2)

n
1 (m2), Y

n
1 ) is ε-jointly weakly typical

arbitrary if there is no such (m1,m2) or more than 1 such (m1,m2).

Then, by symmetry,

P(dn(e(1)n (W1,n), e(2)n (W2,n)) 6= (W1,n,W2,n))

= P(dn(e(1)n (1), e(2)n (1)) 6= (1, 1))

≤ P(Ec1,1) +
∑
i 6=1

P(Ei,1) +
∑
j 6=1

P(E1,j) +
∑

i 6=1,j 6=1

P(Ei,j),

where Ei,j is the event that ((X1)
n
1 (i), (X2)

n
1 (j), Y n

1 ) us ε-jointly weakly typical. Then
P(E1,1)→ 0 by the weak law of large numbers, and

P(Ei,1) =
∑

((x1)n1 ,(x2)
n
1 ,y

n
1 )∈A

(n)
ε

p((x1)
n
1 )p((x2)

n
1 , y

n
1 )

≤ |A(n)
ε |2−nH(X1)2nε

≤ 2nH(X1,X2,Y )2nε2−nH(X2,Y )2nε2−nH(X1)2nε

= 2−nI(X1;X2;Y )23nε

= 2−nI(X1;Y |X2)23nε

because I(X1;X2) = 0. Hence,∑
i 6=1

P(Ei,1) ≤ 2n(R1−δ)2−nI(X1;X2|Y )23nε,

so if R1 < I(X1;X2 | Y ) − 3ε + δ, then this goes to 0 as n → ∞. We can apply a similar
argument to P(E1,j).
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When i 6= 1 and j 6= 1,

P(Ei,j) ≤
∑

((x1)n1 ,(x2)
n
1 ,y

n
1 )∈A

(n)
ε

p((x1)
n
1 )︸ ︷︷ ︸∏n

t=1 pX1
(x1,t)

p((x2)
n
1 )︸ ︷︷ ︸∏n

t=1 pX2
(x2,t)

p(yn1 )

≤ |A(n)
ε |2−H(X1)2−nε2−nH(X2)2nε2−nH(Y )2nε

≤ 2n(H(X1,X2,Y )−H(X1)−H(X2)−H(Y ))24nε.

This tells us that if R1+R2 ≤ I(X1, X2;Y )−4ε+2δ, then
∑

i 6=1,j 6=1 p(Ei,j)→ 0 as n→∞.

For the converse, we use Fano’s inequality 3 times. For any ((e
(1)
n , e

(2)
n , dn), n ≥ 1,

nR1 + o(n) = logd2nR1e
= H(W1)

= I(1;Y
n
1 ) +H(W1 | Y n

1 )

≤ I(W1 | Y n
1 ) + nεn,

where εn → 0 from Fano’s inequality because H(W1 | Y n
1 ) ≤ H(W1,W2 | Y n

1 ) and

H(W1,W2 | Y n
1 ) ≤ h(p

(n)
error) + n(R1 +R2)p

(n)
error.

≤ I((X1)1
n(W1);Y

n
1 )

= H((X1)
n
1 (W1))−H((X1)

n
1 (W1) | Y n

1 ) + nεn

= H((X1)
n
1 (W1) | (X1)

n
1 (W2))−H((X1)

n
1 (W1) | Y n

1 , (X2)
n
1 (W2)) + nεn

= I((X1)
n
1 (W1);Y

n
1 | (X2)

n
1 (W2)) + nεn

= H(Y n
1 | (X2)

n
1 (W2))−H(Y n

1 | (X1)
n
1 (W1), (X2)

n
1 (W2)) + nεn

≤
n∑
i=1

H(Yi | (X2)
n
1 (W2))−

n∑
i=1

H(Yi | X1,i(W1), X2,i(W2)) + εn

=
n∑
i=1

I(Yi;X1,i | X2,i) + nεn.

We get R1 ≤ 1
n

∑n
i=1 I(Yi;X1,n | X2,i) + εn and similar bounds for R2 and R1 +R2.

1.2 Achievable rate pairs of a multiuser AWGN channel

In the case of Gaussian noise, we have input X1 with power constraint P1 and input X2

with power constraint P2. WIth N (0, σ2) noise, the result is more explicit:

Theorem 1.2. With Gaussian noise, the set of achievable rate pairs is{
(R1, R2) :R1 ≤

1

2
log

(
1 +

P1

σ2

)
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R2 ≤
1

2
log

(
1 +

P2

σ2

)
R1 +R2 ≤

1

2
log

(
1 +

P1 + P2

σ2

)}
.
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